Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimessieve(nats(s(s(0))))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimessieve(nats(s(s(0))))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimessieve(nats(s(s(0))))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
zprimessieve(nats(s(s(0))))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(cons(x1)) = x1   
POL(filter(x1, x2, x3)) = 2 + 2·x1 + x2 + x3   
POL(nats(x1)) = x1   
POL(s(x1)) = x1   
POL(sieve(x1)) = 1 + x1   
POL(zprimes) = 2   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

nats(N) → cons(N)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

nats(N) → cons(N)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

nats(N) → cons(N)
Used ordering:
Polynomial interpretation [25]:

POL(cons(x1)) = 1 + x1   
POL(nats(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.